
Memcached vs Redis

How does performance of
Memcached compare to Redis

on a common feature set?

2

● Motivation
● Object Caches
● Methodology
● Memcached & Redis features
● Benchmarks

3

OUTLINE

● Caching is essential to system scalability
● Memcached

○ Older
○ Extensively researched
○ Multi-threaded
○ Heavily utilized at Facebook, Twitter, Google, Amazon

● Redis
○ Younger
○ Single-threaded
○ Richer feature-set

4

MOTIVATION

5

WEB SERVICES

RDBMS

SERVICE A

SERVICE B

SERVICE C

CLIENT 1

CLIENT 2

CLIENT 3

CLIENT N

6

WEB SERVICES WITH CACHES

RDBMS

SERVICE A

SERVICE B

SERVICE C

CLIENT 1

CLIENT 2

CLIENT 3

CLIENT N

� OBJECT
CACHE

7

ASK A CACHE

RDBMS

SERVICE BCLIENT 1

OBJECT
CACHE

HTTP GET /towel get(towel)

value(towel)

not found

<div>
 May hitchhike
</div>

<div>
 No towel.
 Should get one.
</div>

query

towel

not found

set(towel, 1)

● API
○ get, set, delete

● Advantages
○ Reduce response time
○ Avoid re-computation
○ Decrease RDBMS Load
○ Exploit temporal usage patterns

● Applications
○ Memcached
○ Redis

8

OBJECT CACHES

● Memcached
○ Multi-threaded (locks)
○ Multi-server
○ get, set, delete, mget

● Redis
○ Single-threaded / Multiple instances
○ Data persistence
○ get, set, delete, mget & hyperloglog, lists, sets, sorted sets

9

MEMCACHED & REDIS FEATURES

● Metrics
○ Latency & 99th Percentile Latency
○ CPU Utilization
○ Quality of Service (99th < 1ms)

● Benchmark
○ 1 host, 7 clients, 1 rack
○ 6-core Intel Xeon @ 1.60GHz, 8GB RAM, 1Gbps NIC
○ Utilizes MemtierBenchmark by RedisLabs

10

METHODOLOGY

● Out of the box performance
● Scaling up
● Object Size
● Key Distribution

● Unless stated otherwise
○ object size is 64 bytes
○ Key distribution is uniform with 100m keys

11

BENCHMARKS

12

BASELINE: MEMCACHED (4 threads)

13

BASELINE: REDIS (1 thread, 1 instance)

14

BASELINE: MEMCACHED VS REDIS

● More hardware
● Faster hardware
● Multiple Threads

○ Only Memcached
● Multiple Instances

○ (spawn multiple isolated processes of the same application)
○ Both Memcached and Redis

Note: Each server has 6 CPUs.

15

SCALE UP: How do we scale M & R vertically?

16

SCALE UP: MEMCACHED - Latency

17

SCALE UP: MEMCACHED - CPU Utilization

18

SCALE UP: MEMCACHED - Individual CPU Utilization

19

SCALE UP: REDIS - Latency

20

SCALE UP: REDIS - CPU Utilization

21

SCALE UP: REDIS - Individual CPU Utilization

Why are all software interrupts processed on a single core?

>> IRQ Affinity

22

SCALE UP: THE PROBLEM

Distribute software interrupt processing across all cores.

23

SCALE UP: THE SOLUTION

$ cat /proc/interrupts | grep eth0 | awk ’{ print $1 " " $9 }’

$ echo CPU_ID > /proc/irq/QUEUE_ID/smp_affinity_list

24

SCALE UP: MEMCACHED - Latency

25

SCALE UP: MEMCACHED - CPU Utilization

26

SCALE UP: MEMCACHED - Individual CPU Utilization

27

SCALE UP: REDIS - Latency

28

SCALE UP: REDIS - CPU Utilization

29

SCALE UP: REDIS - CPU Utilization

30

SCALE UP: REDIS vs MEMCACHED

● Software interrupt processing is a bottleneck
○ CPU Utilization suboptimal
○ Let all CPU cores handle interrupts

● Best performance is with as many threads/instances as CPU
cores

● Stats:
○ Memcached: 550k requests/second, 0.45ms
○ Redis: 500k requests/second, 0.52ms

31

SCALE UP: Conclusion

32

OBJECT SIZE

● Vary the object size with best performing configuration
○ 6 threads/instances
○ IRQ Affinity set

● Key space decreases from 100m proportionately to object size
○ (large values, need less keys to keep space constant)

● Benchmarks run on a 1Gbps link

33

OBJECT SIZE: MEMCACHED - Latency

34

OBJECT SIZE: MEMCACHED - CPU Utilization

35

OBJECT SIZE: REDIS - Latency

36

OBJECT SIZE: REDIS - CPU Utilization

37

OBJECT SIZE Evaluation

● Network dominates large objects
● QoS

○ Memcached: 256 KB
○ Redis: 128 KB
○ 99th < 1ms QoS may be too strict for large objects

● Memcached performs better
● Neither optimized for large objects

38

OBJECT SIZE: MEMCACHED vs REDIS

39

KEY DISTRIBUTION

● Idea: Some keys appear more often than others
○ Zipf

40

KEY DISTRIBUTION: MEMCACHED

Higher zipf factor = higher skew

41

KEY DISTRIBUTION: REDIS

Higher zipf factor = higher skew

42

KEY DISTRIBUTION: MEMCACHED vs REDIS

Higher zipf factor = higher skew

43

KEY DISTRIBUTION Evaluation

● 99th percentile latency unaffected
● Redis operations per second improve with higher skew
● Memcached remains stable

44

CONCLUSION

● Memcached outperforms Redis on common feature set
● Redis scaled up performs nearly as good as Memcached

○ Multi-instance single threaded application can perform nearly
as good as multi-threaded

● Both Memcached & Redis perform better with smaller objects
○ Client side object splitting/joining

● Redis performance improves with skewed key distributions

45

FUTURE WORK

● Multiple server configurations
● More hardware
● Faster hardware
● Memcached Cluster vs (new) Redis Cluster

THANKS

46

Q & A

47

