Memcached vs Redis



How does performance of
Memcached compare to Redis
on a common feature set?
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MOTIVATION

e Caching is essential to system scalability

e Memcached

Older

Extensively researched

Multi-threaded

Heavily utilized at Facebook, Twitter, Google, Amazon

e Redis

o Younger
o Single-threaded
o Richer feature-set
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WEB SERVICES

SERVICE C

CLIENT 1

SERVICE A
CLIENT 2
CLIENT 3 A SERVICE B

CLIENTN




WEB SERVICES WITH CACHES




ASK A CACHE

HTTP GET /towel get(towel) OBJECT
CACHE
not found
CLIENT 1 SERVICE B ‘
<div>
No towel.
Should get one. query
</div>
RDBMS

not found




OBJECT CACHES

e API

o get, set, delete
e Advantages

o Reduce response time

o Avoid re-computation

o Decrease RDBMS Load

o Exploit temporal usage patterns
e Applications

o Memcached

o Redis



MEMCACHED & REDIS FEATURES

e Memcached
o Multi-threaded (locks)
o Multi-server
o get, set, delete, mget
e Redis
o Single-threaded / Multiple instances
o Data persistence
o get, set, delete, mget & hyperloglog, lists, sets, sorted sets



METHODOLOGY

e Maetrics
o Latency & 99th Percentile Latency
o CPU Utilization
o Quality of Service (99th < Tms)

e Benchmark

o 1 host, 7 clients, 1 rack
o 6-core Intel Xeon @ 1.60GHz, 8GB RAM, 1Gbps NIC
o Utilizes MemtierBenchmark by RedisLabs
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BENCHMARKS

Out of the box performance
Scaling up

Object Size

Key Distribution

e Unless stated otherwise
o object size is 64 bytes
o Key distribution is uniform with 700m keys
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BASELINE: MEMCACHED (4 threads)
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latency [msec]

BASELINE: REDIS (1 thread, 1 instance)
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BASELINE: MEMCACHED VS REDIS

B 29th latency
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SCALE UP: How do we scale M & R vertically?

e More hardware
e Faster hardware

e Multiple Threads
o Only Memcached

e Multiple Instances

O (spawn multiple isolated processes of the same application)
o Both Memcached and Redis

Note: Each server has 6 CPUs.
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latency [msec]

SCALE UP: MEMCACHED - Latency
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SCALE UP: MEMCACHED - CPU Utilization
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SCALE UP: MEMCACHED - Individual CPU Utilization
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latency [msec]

SCALE UP: REDIS - Latency
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CPU Utilization [%]

SCALE UP: REDIS - CPU Utilization
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CPU Utilization [%]

SCALE UP: REDIS - Individual CPU Utilization
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SCALE UP: THE PROBLEM

Why are all software interrupts processed on a single core?

>> IRQ Affinity
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SCALE UP: THE SOLUTION

Distribute software interrupt processing across all cores.
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latency [msec]

SCALE UP: MEMCACHED - Latency
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SCALE UP: MEMCACHED - CPU Utilization
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SCALE UP: MEMCACHED - Individual CPU Utilization
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latency [msec]

SCALE UP: REDIS - Latency
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SCALE UP: REDIS - CPU Utilization
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CPU Utilization [%]

SCALE UP: REDIS - CPU Utilization
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latency [msec]

SCALE UP: REDIS vs MEMCACHED
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SCALE UP: Conclusion

e Software interrupt processing is a bottleneck
o CPU Utilization suboptimal
o Letall CPU cores handle interrupts
e Best performance is with as many threads/instances as CPU
cores
e Stats:
o Memcached: 550k requests/second, 0.45ms
o Redis: 500k requests/second, 0.52ms
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OBJECT SIZE

e Vary the object size with best performing configuration
o 6 threads/instances
o IRQ Affinity set

e Key space decreases from 100m proportionately to object size
o (large values, need less keys to keep space constant)
e Benchmarks run on a 1Gbps link
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latency [msec]

OBJECT SIZE: MEMCACHED - Latency
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OBJECT SIZE: MEMCACHED - CPU Utilization
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latency [msec]

OBJECT SIZE: REDIS - Latency
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OBJECT SIZE: REDIS - CPU Utilization

B usr Bsys [ iowait M irg [ soft

100

~
14}

CPU Utilization [%]
19)]
o

25

]
- — N

[ e o= B = ==
64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
object size [bytes]



OBJECT SIZE Evaluation

e Network dominates large objects
e QoS
o Memcached: 256 KB
o Redis: 128 KB
o 99th < 1ms QoS may be too strict for large objects
e Memcached performs better
e Neither optimized for large objects
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latency [msec]

OBJECT SIZE: MEMCACHED vs REDIS

—— QoS  =—e— Memcached 99% === Memcached Ops Redis 99% —— Redis Ops
2 / 600k

1.5 / 450k
1 300k
—
0.5 150k
0 -— i = Ok

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
object size [bytes]

# of operations per second



KEY DISTRIBUTION

e Idea: Some keys appear more often than others
o Zipf

CDF

Om 2m 4m 6m 8m 10m
39

Key



latency [msec]

KEY DISTRIBUTION: MEMCACHED

Higher zipf factor = higher skew
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latency [msec]

KEY DISTRIBUTION: REDIS

Higher zipf factor = higher skew
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latency [msec]

KEY DISTRIBUTION: MEMCACHED vs REDIS

Higher zipf factor = higher skew
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KEY DISTRIBUTION Evaluation

e 99th percentile latency unaffected
e Redis operations per second improve with higher skew
e Memcached remains stable
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CONCLUSION

e Memcached outperforms Redis on common feature set
e Redis scaled up performs nearly as good as Memcached
o Multi-instance single threaded application can perform nearly
as good as multi-threaded
e Both Memcached & Redis perform better with smaller objects
o Client side object splitting/joining
e Redis performance improves with skewed key distributions
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FUTURE WORK

Multiple server configurations

More hardware

Faster hardware

Memcached Cluster vs (new) Redis Cluster
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THANKS
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