Memcached vs Redis

How does performance of
Memcached compare to Redis
on a common feature set?

OUTLINE

Motivation

Object Caches

Methodology

Memcached & Redis features
Benchmarks

MOTIVATION

e Caching is essential to system scalability

e Memcached

Older

Extensively researched

Multi-threaded

Heavily utilized at Facebook, Twitter, Google, Amazon

e Redis

o Younger
o Single-threaded
o Richer feature-set

@)
©)
©)
©)

WEB SERVICES

SERVICE C

CLIENT 1

SERVICE A
CLIENT 2
CLIENT 3 A SERVICE B

CLIENTN

WEB SERVICES WITH CACHES

ASK A CACHE

HTTP GET /towel get(towel) OBJECT
CACHE
not found
CLIENT 1 SERVICE B ‘
<div>
No towel.
Should get one. query
</div>
RDBMS

not found

OBJECT CACHES

e API

o get, set, delete
e Advantages

o Reduce response time

o Avoid re-computation

o Decrease RDBMS Load

o Exploit temporal usage patterns
e Applications

o Memcached

o Redis

MEMCACHED & REDIS FEATURES

e Memcached
o Multi-threaded (locks)
o Multi-server
o get, set, delete, mget
e Redis
o Single-threaded / Multiple instances
o Data persistence
o get, set, delete, mget & hyperloglog, lists, sets, sorted sets

METHODOLOGY

e Maetrics
o Latency & 99th Percentile Latency
o CPU Utilization
o Quality of Service (99th < Tms)

e Benchmark

o 1 host, 7 clients, 1 rack
o 6-core Intel Xeon @ 1.60GHz, 8GB RAM, 1Gbps NIC
o Utilizes MemtierBenchmark by RedisLabs

10

BENCHMARKS

Out of the box performance
Scaling up

Object Size

Key Distribution

e Unless stated otherwise
o object size is 64 bytes
o Key distribution is uniform with 700m keys

11

latency [msec]

BASELINE: MEMCACHED (4 threads)

=o= |atency === 09% latency total ops/sec —— QoS
1.5 250k
1.2 200k
0.9 150k
e
03— 20K
0 Ok
50 70 90 110 130 150

of connections

of operations

latency [msec]

BASELINE: REDIS (1 thread, 1 instance)

== latency == 99% latency total ops/sec = —— QoS

1 / 100k
0.8 80k
0.6 60k
0.4 40k
0.2 20k

0 Ok

20 28 36 44 52 60 68

of connections

of operations

BASELINE: MEMCACHED VS REDIS

B 29th latency

B operations per second

1 240k
0.96 180k
°
c
> g
o %
g 5
> 092 120k %
c c
& S
3 3
S
0.88 60k
0.84 Ok

Memcached Redis

SCALE UP: How do we scale M & R vertically?

e More hardware
e Faster hardware

e Multiple Threads
o Only Memcached

e Multiple Instances

O (spawn multiple isolated processes of the same application)
o Both Memcached and Redis

Note: Each server has 6 CPUs.

15

latency [msec]

SCALE UP: MEMCACHED - Latency

1.6

1.2

=
o

0.4

—— QoS =—e= |latency === 99% latency # of ops

/

)4

(

2 4 6
of threads

10

300k

250k

200k

150k

100k

of operations per second

SCALE UP: MEMCACHED - CPU Utilization

Bl ussr Bsys [iowait M irg M soft
80
)
40 .

CPU Utilization [%]

B
- 5 & B I B B B BB

of threads

SCALE UP: MEMCACHED - Individual CPU Utilization

B usr B sys soft
100

CPU Utilization [%]
9] ~J
o 6]

N
a

CPUID

latency [msec]

SCALE UP: REDIS - Latency

—— QoS =—e— latency === 99% latency # of ops
3 300k

225k
2

150k
of N ~ 1

75k
0 Ok

1 2 3 4 5 6 7 8 9 10
of instances

of operations per second

CPU Utilization [%]

SCALE UP: REDIS - CPU Utilization

100

75

50

25

Bl usr Blsys [0 iowait M irg [soft

of instances

CPU Utilization [%]

SCALE UP: REDIS - Individual CPU Utilization

B %usr [%sys [%soft
100
75 -
50 |
25 -
0 -_-_l-_l
0 1 2 3 4 5

CPUID

SCALE UP: THE PROBLEM

Why are all software interrupts processed on a single core?

>> IRQ Affinity

22

SCALE UP: THE SOLUTION

Distribute software interrupt processing across all cores.

23

latency [msec]

SCALE UP: MEMCACHED - Latency

—— QoS =—e— latency === 99% latency # of ops
24 600k

1.8 450k
1.2 300k
\ b "
0.6 Q* 150k
+
+
— s % ®
0 Ok
1 2 3 & 5 6 7 8

of threads

of operations per second

SCALE UP: MEMCACHED - CPU Utilization

Bl ussr Blsys B iowait [irg [soft

100

"y 75
\a\?‘
e
S

N 50
S
a
O

25

0

4 5 6 7 8
of threads

SCALE UP: MEMCACHED - Individual CPU Utilization

0 %soft

B °ousr

B %sys
100

75 l

50

CPU Utilization [%]

25

CPUID

latency [msec]

SCALE UP: REDIS - Latency

2

-
(6;]

—

o
o

— QoS

=== |atency

== 00% latency

of ops

1.5

4.5

6
of instances

7.5

600k

450k

300k

150k

Ok

of operations per second

SCALE UP: REDIS - CPU Utilization

CPU Utilization [%]

100

75

50

25

B usr

B sys

iowait

Bl irq

B soft

3

of instances

CPU Utilization [%]

SCALE UP: REDIS - CPU Utilization

[%soft

B %usr M %sys

Il N B E

0 1 2 3 4 5
CPUID

100

75

50

25

latency [msec]

SCALE UP: REDIS vs MEMCACHED

=@= Redis 99% =e= Redis Ops Memcached 99% <= Memcached Ops —— QoS
3 / 600k
J{-‘\?-f-r.;‘:_’__._hj-.ﬂ--' — — =]n.'-, =— = = = s 2 - e :,:.

450k
2

300k
1

150k
0 Ok

of instances/threads

of operations per second

SCALE UP: Conclusion

e Software interrupt processing is a bottleneck
o CPU Utilization suboptimal
o Letall CPU cores handle interrupts
e Best performance is with as many threads/instances as CPU
cores
e Stats:
o Memcached: 550k requests/second, 0.45ms
o Redis: 500k requests/second, 0.52ms

31

OBJECT SIZE

e Vary the object size with best performing configuration
o 6 threads/instances
o IRQ Affinity set

e Key space decreases from 100m proportionately to object size
o (large values, need less keys to keep space constant)
e Benchmarks run on a 1Gbps link

32

latency [msec]

OBJECT SIZE: MEMCACHED - Latency

— QoS =—e— latency === 99% latency # of ops
2 600k

15 450k
1 J/ 7 300k

0.5 150k
0 0k

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
object size [bytes]

of operations per second

OBJECT SIZE: MEMCACHED - CPU Utilization

B usr B sys iowait [l irqg [soft

100

75
S
-
2
N 50
5 -
3
S []
25 I-- [—
0 . N B N

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

latency [msec]

OBJECT SIZE: REDIS - Latency

2

-
(6;]

—

o
o

—— QoS == latency === 99% latency # of ops
64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

object size [bytes]

600k

450k

300k

150k

—— 0k

512K

of operations per second

OBJECT SIZE: REDIS - CPU Utilization

B usr Bsys [iowait M irg [soft

100

~
14}

CPU Utilization [%]
19)]
o

25

]
- — N

[e o= B = ==
64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
object size [bytes]

OBJECT SIZE Evaluation

e Network dominates large objects
e QoS
o Memcached: 256 KB
o Redis: 128 KB
o 99th < 1ms QoS may be too strict for large objects
e Memcached performs better
e Neither optimized for large objects

37

latency [msec]

OBJECT SIZE: MEMCACHED vs REDIS

—— QoS =—e— Memcached 99% === Memcached Ops Redis 99% —— Redis Ops
2 / 600k

1.5 / 450k
1 300k
—
0.5 150k
0 -— i = Ok

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
object size [bytes]

of operations per second

KEY DISTRIBUTION

e Idea: Some keys appear more often than others
o Zipf

CDF

Om 2m 4m 6m 8m 10m
39

Key

latency [msec]

KEY DISTRIBUTION: MEMCACHED

Higher zipf factor = higher skew

1

0.75

o
(3

0.25

— QoS

=== |atency

== 00% latency

of ops

zipf factor

570k

560k

550k

540k

530k

of operations per second

latency [msec]

KEY DISTRIBUTION: REDIS

Higher zipf factor = higher skew

1

0.75

o
3]

0.25

— QoS

=—8=— |atency

=& 99% latency

total ops

zipf factor

520k

510k

500k

490k

480k

of operations per second

latency [msec]

KEY DISTRIBUTION: MEMCACHED vs REDIS

Higher zipf factor = higher skew

—— QoS =e= Redis 99th === Redis ops Memcached 99th =—#@= Memcached ops
1 560k
— —— —a
e
0.88 540k
0.75 520k
—— —
e —
0.63 m=— 500k
& - a i
0.5 480k
1 2 3 4

zipf factor

of operations per second

KEY DISTRIBUTION Evaluation

e 99th percentile latency unaffected
e Redis operations per second improve with higher skew
e Memcached remains stable

43

CONCLUSION

e Memcached outperforms Redis on common feature set
e Redis scaled up performs nearly as good as Memcached
o Multi-instance single threaded application can perform nearly
as good as multi-threaded
e Both Memcached & Redis perform better with smaller objects
o Client side object splitting/joining
e Redis performance improves with skewed key distributions

44

FUTURE WORK

Multiple server configurations

More hardware

Faster hardware

Memcached Cluster vs (new) Redis Cluster

45

THANKS

Q&A

